CPE555 Project Write-up Prof. Yan Meng

Yechao Xu / Allen Kennedy

 Spring 2011

Stevens Institute of Technology
Sunrise alarm clock v1.0
1. Overview

1.1 Abstract

The proposed project was to design and implement an artificial sunrise alarm clock which gently wakes a person by simulating a sunrise, rather than jarring someone awake with a loud noise, as almost all alarm clocks currently do. This sunrise alarm clock can help people start the day in a better mood and feeling more refreshed. This is also good for people that live in apartments, or have bedrooms that do not receive natural light in the morning.

When it is time to awaken, the clock slowly begins to brighten a light, simulating a sunrise that can last anywhere from 5 to 60 minutes. The Sunrise begins before the programmed wake up time and becomes brighter until it is at full brightness at the alarm time. In the off chance that the user has not awaken during the Sunrise, then a back up alarm is used to make sure that the user does wake up.

1.2 Implemented Features

The features of this project are as follows:

· The ability to program your own sunrise for 5, 15, 30, 45, or 60 minutes

· A back up audible alarm

· A smart display that dims at night so it won't disturb your sleep

· A nightlight option;

· Choice of 12 or 24 hour time read-outs

· A dot matrix display capable of simple animations, for interesting displays of time and date.

1.3 Unimplemented Features

1.3.1 Ambient Temperature Display.

This feature was originally added because it was basically a freebee peripheral of the micro-controller that was chosen for the project. However, after working with two different development boards, it was noted that the temperature sensor peripheral was not the same between the chips. Further research into the cause of this revealed a note in the chip's data sheet that that indicated that the temperature sensor should only be used for determining changes in temperature and not for use as an absolute temperature sensor. This was due to some detail of the manufacturing process that allowed for variation in the temperature sensor input that could be up to a 40 degree Celsius difference between chips.

With this newly gained understanding of the peripheral, implementation would have required characterization and calibration over the range of possible temperatures. This was not possible without an accurate temperature chamber, or other similar specialized equipment. Along with this limitation of resources and chip inaccuracies, and with the understanding that this feature is not essential to the initial premise of the alarm clock, the temperature display feature was removed.

1.3.2 Security feature

The Security feature was an idea that was to have the light turn on and off for a few hours at semi random intervals during the night to simulate a persons presence at the location of the night light. To be used as a burglar deterrent when on vacation, this feature was not essential to the alarm clock core paradigm, and due to time constraints, was not implemented.

1.4 Tools

This project was, from the outset, designed and destined to be an open source, open hardware project. As such every effort was made to use only free/open source tools when available. The project presentations and documents were written with Open Office (http://www.OpenOffice.org). The software component was written and debugged with the freely available Keil Embedded tools that are offered by ARM (http://www.keil.com). The hardware components were designed in Kicad, an open source schematic capture and board layout program (http://www.lis.inpg.fr/realise_au_lis/kicad/). Finally, all documents, schematics, board designs, software, and media applicable to the project are freely available on SourceForge at http://sunrisealarm.sourceforge.net/.

2. Implementation Description

2.1 Hardware Description

The hardware implementation for the alarm clock was very similar to that described in the proposal. Differences occurred in the buzzer implementation and power supply implementation. Schematics of the main board and the display board are shown in drawings 1 and 2. Full versions of the schematics can be found on the SourceForge project page described in the Tools section of the Overview.

The hardware implementation for this project has made use of COTS parts whenever possible. The main micro controller is a STM32F100RB Arm Cortex M3 processor on a STM32VLDISCOVERY prototyping board. All components connecting directly to the prototyping board have been wire-wrapped so that the prototyping board may be removed, and reused in another project if desired. Also, since this was the first prototype of the project, wire-wrapping made it easy to reroute connections to the microprocessor if mistakes were made during the design phase.

The display board was made separate from the main board so that the display could be mounted in the case at an appropriate angle for the user to see. The main board

[image: image5.png][image: image6.png]
is attached to the display board via two ribbon cables, one that carries the data signals for the rows of the display matrix, and one that carries the column data signals for the display matrix. A schematic was not created for the ribbon cables, as they are trivial.

The display board contains only the connectors for the ribbon cables, and the two 8x8 LED display matrix panels. The current limiting resistors are places on the main board, as is seen in the schematic. One mistake that was made in design was the assumption that the output of the processor was TTL level (5V) when in fact it was CMOS (3.3V); this meant that the initial calculation and choice for current limiting resistors was incorrect creating a much dimmer display. This was discovered and corrected in the hardware debug phase.

Going back to the processor, 24 general purpose input output (GPIO) pins are used by the display board, four GPIO pins are used for push button inputs, two GPIO pins are used for differential drive of the piezoelectric speaker, one GPIO is used for power to the zero crossing and ambient light sensors, one GPIO is used for the zero crossing detection, and one GPIO is used for activating the sun lamp. The ambient light sensor input uses the analog to digital converter (ADC) alternate function of the GPIO pin to which it is connected. In total, 34 of the prototyping board's I/O are used.

Special care was taken to be sure to choose pins that are appropriate to the purpose for which they are used. For instance, it was important, that the input from the ambient light sensor was connected to a pin that could be used for ADC. Further it was important to not use Port C pin 14 and 15, as they are connected to the external ceramic oscillator that is used to power the Real Time Clock (RTC) peripheral when the project is unplugged from the wall, and keeping time with the backup battery. However some mistakes where made that could have been avoided with better planning, the choice of input for the zero crossing detection conflicted with push-button two, and hardware interrupts could not be used for both simultaneously, this was accounted for and corrected in software. Further, five of the pins used for the display are also defaulted to be used for the software debugging interface, this creates the situation where either the software could be in debug mode, or the display could be fully active, but not both.

The four push button inputs are normally closed switches that are simply connected to the chip and to ground. Internal pull-ups in the microprocessor peripheral allow the positive edge detection that triggers the interrupt, when the switch is activated. In this configuration, no current limiting was required.

The piezoelectric speaker was another interesting challenge. Again, the assumption that the board puts out TTL logic levels caused an issue where there was not enough swing in voltage to achieve any sizable volume from the speaker in the original design, which had the speaker running from the pin to ground, with a small resistor in series. This problem was overcome by hooking up the speaker to two GPIOs and driving it differentially. This allowed for a 6.6v P-P drive voltage which significantly increased the volume level of the speaker.

The ambient light sensor uses a simple voltage divider type circuit that allows the microprocessor to read a voltage level that varies proportionally with the amount of ambient light in the room.

The zero crossing detector uses, as input, the full wave rectified 6.3VAC signal. The signal is voltage divided, and run through a low pass filter to create a slightly more pulse like output, which is then run through a 2n2222 transistor configured in saturation mode to act as a switch that when turned on, will ground the zero_det input signal to the microprocessor, and when turned off, the sensor_power signal will pull the line back high.

The original proposal called for a gutted wal-wart type power supply to run the controller board. However, it was easier to use a simple transformer, full-wave rectifier, and a largish electrolytic capacitor as input to the STM Discovery prototyping board. The prototyping board has a built-on LD1117DT33C low drop out power regulator, which works quite well with a smoothed 6.3v input. This also allowed for an interesting feature, that while not used by the software currently, could be used in the future. That is, loss of AC power could be detected by a missed event in the zero crossing detector, and the chip will remain fully powered by the 1000 uF cap for a period of at least 20mS, which would allow for the chip to power down safely. More on this in the future work section.

The sunrise lamp is a UL approved fixture purchased at home depot with a 60 watt full spectrum incandescent bulb used to simulate the sun. This is connected to a triac, and then back to the main input power. The triac, in turn, is connected to a diac optoisolator to shield the microprocessor from the possibility of an accidental 120 volts should the triac fail, in an unsafe manner.

The backup battery is a bit of over engineering. Simple, cheap, off-the-shelf parts led to a backup battery of 2 AA batteries in a holder connected to the BATT input of the prototyping board. Later, reading the current draw of the backup power line, is was calculated that with the backup battery is being AA batteries, with a standard capacity of 2700mAh, and the board drawing only 2.2uA while running the RTC, without primary power, the time backup registers and clock would be safe for 140,000 years. This is well longer than the maximum 136 Years the RTC could actually account for without rolling over, and even longer than the batteries themselves could last without complete degradation, given that most alkaline cells would kill themselves in 10 years or so. This means, that the backup batteries never need to be replaced due to them dying from too much current draw from the board.

Two modifications were necessary to be made to the prototyping board. The first was that a protection diode needed to be replaced, due to a mishap with a brass solder sponge. The second was that the BATT input to the chip, was connected to VDD. This was in opposition to the documentation that came with the board. This was corrected with a removal of a zero ohm resistor.

The case for the project is a standard radio shack project case, obviously modified to allow for the push-buttons, sun-lamp mounting, power cord, and display viewing.

While the main board was wire wrapped, the display board was routed and etched, to provide a more finished look to the display, at least from the inside. It also helped to cut down on all the wiring that was necessary, for the display. The main board, due to its physical size, and requirement for it to be a double-sided board, was a bit too much for simple home fabrication; in the future main board could be routed fully, and etched. Drawing 3 is the copper layer for the display board. The eight largish pads are for surface mounting wire jumpers to connect the last four signals that couldn't be routed on a single layer board.

[image: image7.png]
2.2 Costed Bill of materials

	Component
	Description
	Supplier
	Part Number
	Price

	Main Board

	BT1
	3.2V (2xAA)
	Mouser
	12BH324A-GR
	$0.57

	C1
	100 pF ceramic
	Jameco
	15341
	$0.06

	C2
	1mF
	Jameco
	330722
	$0.35

	D3
	2W10M
	Jameco
	279515
	$0.55

	D4
	1N4001
	Radio Shack
	276-1653
	$0.12

	F1
	1 Amp
	Jameco
	1711947
	$0.95

	J1
	EDISON_PLUG
	Junk Box
	
	$0.50

	LP1
	LAMP
	The Home Depot
	
	$5.99

	P1
	CONN_2
	none
	
	

	P2
	CONN_1
	none
	
	

	P3
	CONN_1
	none
	
	

	P4
	DIL16
	Jameco
	37373
	$0.17

	P5
	DIL8
	Jameco
	51571
	$0.12

	Q1
	2N2222
	Mouser
	863-P2N2222AG
	$0.36

	R1
	CDS001-8001
	Jameco
	202403
	$0.89

	R2
	10k
	Jameco
	691104
	$0.02

	R3
	220
	Jameco
	690700
	$0.02

	R4
	220
	Jameco
	690700
	$0.02

	R5
	10k
	Jameco
	691104
	$0.02

	R6
	1k
	Jameco
	690865
	$0.02

	R7
	4.7k
	Jameco
	691024
	$0.02

	R8
	470k
	Jameco
	691500
	$0.02

	R9
	10k
	Jameco
	691104
	$0.02

	R10
	220
	Jameco
	690700
	$0.02

	RP1
	56 Ohm
	Mouser
	652-4116R-1-56
	$0.52

	RP2
	56 Ohm
	Mouser
	652-4116R-1-56
	$0.52

	SP1
	Piezoelectric Speaker
	Jameco
	2098558
	$1.19

	SW1
	MENU
	Jameco
	26649
	$0.59

	SW2
	UP
	Jameco
	26649
	$0.59

	SW3
	DOWN
	Jameco
	26649
	$0.59

	SW4
	BACK
	Jameco
	26649
	$0.59

	T1
	120:6.3 VAC
	Jameco
	102163
	$6.95

	U1
	STM32-DISCOVRY
	Arrow
	STM32-DISCOVRY
	$10.34

	U2
	OPTO-TRIAC
	Mouser
	512-MOC3021M
	$0.67

	Display Board

	U3
	BT136D
	Mouser
	771-BT136-600D
	$0.35

	D1
	8X8_LED_MATRIX
	Futurlec
	LEDM88RGCA
	$3.90

	D2
	8X8_LED_MATRIX
	Futurlec
	LEDM88RGCA
	$3.90

	P1
	DIL16
	Jameco
	37373
	$0.17

	P2
	DIL8
	Jameco
	51571
	$0.12

	Misc.

	Case
	
	Radio Shack
	270-1809
	$6.99

	PCB
	
	Radio Shack
	276-1394
	$2.99

	solder
	
	various
	
	$1.00

	wire
	
	Radio Shack
	278-503
	$2.00

	misc.
	screws, heat shrink, etc
	various
	
	$3.00

	--

	total
	
	
	
	$57.78

As stated in the proposal, the cost would be about $50.00, and the actual cost, not including shipping, was not far off the mark. Many of these components are in one-off quantities, and may be significantly cheaper in bulk. Also, costs could further be reduced by no longer using the STM32-Discovery prototyping board, and instead adding the appropriate support hardware, and the microprocessor itself. This could reduce costs by as much as 25%.

If sold as a kit, for Do-It-Yourself-ers, with a bit of a “bring your own micro-controller” mentality, the STM32Discovery could be left out, the case could be left out, and the Home Depot fixture could be left out, nearly cutting the kit price in half.

2.3 Software Description

2.3.1 Sun-Rise Clock Software architecture

[image: image1.emf]Task Manager

Program flow control

Error handling

Supervision tasks and cyclic application tasks

Shared

Memory

Input

Interface

Hard

Reset

Push

Buttom

LED Module

RTC

Timer

PWM Module

Bulb

brightness

Circuitry

GPIO

PWM

RTX

Kernel

GPIO

Buzz Alarm

ADC

Light

Sensor

Zero

corssing

GPIO ISR

Figure 1: Software architecture
2.3.1.1 RTOS
Keil RTX is used for this project. It is a royalty-free, deterministic real time operating system designed for ARM and Cortex-M devices. It is part of the Vision4 IDE and support all the standard multi-task features. ThreadX was considered as RTOS for this project. After some investigation, we realized it would be very time consuming to modify the kernel of ThreadX to work with ARM9 under Keil Vision4 IDE.

2.3.1.2 LED
To let the LED module shows data without causing user to notice the flicking. A 480HZ LED_ISR is trigger by an internal timer. Inside the ISR, it refreshes one of the eight rows in order at a calculated duty cycle to dim/undim the LED. Every 8 ISR calls will refresh the whole LED module once. That means the LED module is refresh at a 60HZ. Dual buffering is implemented here. When the display function is updating the display data, it sets the flag from a free buffer and starts to access the buffer data, while another buffer is accessed by the LED_ISR at the same time. By doing this, we can ensure the buffer will not be corrupted from been accessed by two tasks at a short period.

2.3.1.3 Real Time Clock
RTC register is backed up by the internal battery. Therefore, the entire register configuration will be kept, and real time clock will still ticking even the 110 AC is unplugged. The RTC task reads the real time counter and alarm clock counter register during system initialization, and then RTC ISR is trigger every sec to increment the real time variables.

2.3.1.4 Buzz Alarm

The Buzz task is blocked during normal time, only when the alarm flag is set will this task been signaled and resumed. Two GPIO pins have been turned on/off in an opposite order to generate the alarm buzz.

2.3.1.5 Zero Crossing / Sun lighting

Zero crossing circuit provides an input pulse when 60HZ AC cross the zero line. Another internal timer counter is kept triggering at a higher frequency. When zero crossing ISR triggered, it reset the counter. Only when that counter reaches the calculated duty cycle counter number inside that timer ISR will the pulse been sent out to latch the triac in one semi AC cycle.

The way triac circuit works is like a latch. If it has been turn on, it will be latched until the voltage crossing the zero line again. Then it will reset it self until another input pulse hit the triac.

[image: image2.png]
Figure 2: Sunrise Voltage Duty Cycle

2.3.2 Software Module and Task Scheduling

[image: image3.emf]Main_Task

LED ISR

Triac ISR

RTC_Task

Zero Cross

ISR

High

Priority

Low

Priority

Figure 3: Task/ISR scheduling

Due to the vision requirement of the LED module and the bulb light circuit. Those two tasks need to be hard real time scheduled to ensure no flicking either on the LED module or the bulb. Both tasks are called inside of the ISR. Because it requires a lot of CPU run time to dim the LED by adjust the duty cycle without a real PWM peripheral. A preemption priority scheme is implemented here. The triac ISR has a higher priority than LED ISR and would be able to block the LED ISR while it’s running. The Zero Crossing ISR has the highest priority and will be able to block any running task/ISR to ensure the sync with 60 Hz AC input.

The whole system is priority based. Zero crossing ISR has the highest priority. Follow by the triac ISR, LED ISR, and then the Main Task. The RTC Task and Buzz Task have the lowest priority and they are blocked most of the CPU run time.

[image: image4.emf]Main()

Main Task

OS Init()

HW Init()

Alarm Task

RTC Task

LED ISRRefresh LED

Menu Task

Control Task

Light Sensing/Dim

Push Bottom input

Display Decode

Sun rise Trigger

Buzz Task

Light Sensor

Triac ISR

Zero Crossing ISR

Latch Triac

Figure 4: Software Code Overview

3. Conclusion

3.1 Lessons Learned

For the hardware, it was learned that when choosing pins to use on a largish device such as the STM32100 that was used in this project, it's very important to be sure all of the uses of that pin are in line with what the project is attempting to use it for. Also, checking output voltage levels is very important. It's not good to just assume that every chip outputs 5V.

Another lesson is to not always trust datasheets, but to get parts and test them in circuit. The photo-resistor for example, specified a certain range of resistance for light and dark, and the actual part was significantly different. Same goes for the STM32Discovery board, it stated clearly that BATT was not connected to anything, but on the actual board, the jumper was indeed soldered in place.

For software, it was learned that task scheduling is really important. The triac lighting was flicking really bad before it was realized that the LED ISR is taking too much CPU run time and causing the zero crossing ISR to miss the pulse trigger.

3.2 Future work

For the hardware, one piece of future work is self evident; the main board needs to be routed. Also, a standalone temperature sensor could be added to the system; maybe just a simple thermocouple and a resistor into one of the ADC lines.

The volume of the backup alarm, while adequate, could be made louder. While it is just loud enough to wake a user, having it a bit louder would be good. This could be possible through the use of both secondary taps off the transformer, that provides a good 14V P-P, that could be rectified, run through a smoothing cap, and used through a mosfet H bridge to apply full forward and reverse voltages creating a 28V P-P earsplitting 90db+, which should be plenty enough to wake any heavy sleeper, and possibly their neighbors. The possibility is there in the hardware; just a few more components could get that to work.

Finally, for hardware, the backup battery could be changed to a coin cell. A CR2032, or the like, could adequately power the backup circuitry for years, and might never need replacing.

For the software, due to the limitation of resource and time, a simple way to directly connect the GPIO with the LED modules was used, which could have used a MUX to save a lot of pins. Also if time allowed, a DMA should be used to transfer the display data from memory to GPIO without CPU intervention, which could save a lot of CPU run time.

Further work could be done in concert with the hardware feature that allows the chip to be fully powered after the unit is unplugged from the wall, for a period of at least 20ms. This could be used to store time in the backup registers, and upon power up, know how long the unit was unplugged for, which may be useful. Or perhaps it could be used, with some additional circuitry, to alert a user via test message, or tweet, that power was lost.
3.3 Wrap up

This project presented an interesting challenge for a student of Introduction to Real-Time and Embedded systems, as it has many different real time, and concurrency elements that are required for proper operation. This project was the proper level of difficulty for the two member team that is presenting it, in both hardware and software.

The objectives stated in the proposal were as follows:

3.3.1 Gain a good understanding on how to design an embedded system from scratch.

This was accomplished during the construction and programming of the project. The design decisions that were initially chosen had to be tweaked as the software and hardware elements began to come together.

3.3.2 Verify the theory and concept we learned from CPE-555.

This was particularly relevant as the theory of schedulability of periodic tasks was calculated, and tested to meet those calculations, with great success. Typical scheduling problem like deal lock is avoided by assigning proper level of priority to different tasks.
3.3.3 Establish the relationship between hardware and software implementation.

By completing the project successfully, this was evident. We both gained a lot of experience from hardware and software, and how two different fields can be interleaved.
�Drawing � SEQ "Drawing" *Arabic �1�: Main Board Schematic

�Drawing � SEQ "Drawing" *Arabic �2�: Display Board Schematic

�Drawing � SEQ "Drawing" *Arabic �3�: Display Board Copper Etch Pattern with board outline

_1365339599.vsd
Main()

Main Task

OS Init()

HW Init()

Alarm Task

Refresh LED

RTC Task

Menu Task

Control Task

Triac ISR

Light Sensing/Dim

Push Bottom input

Light Sensor

Zero Crossing ISR

Display Decode

Sun rise Trigger

LED ISR

Buzz Task

Latch Triac

_1365343655.vsd
Sequence

Main_Task

LED ISR

Triac ISR

RTC_Task

Zero Cross ISR

High Priority

Low Priority

_1365329717.vsd
Task Manager
Program flow control
Error handling
Supervision tasks and cyclic application tasks

GPIO

Hard
Reset

Shared
Memory

RTX
Kernel

Input Interface

Push Buttom

LED Module

Bulb brightness Circuitry

PWM

RTC
Timer

PWM Module

GPIO

Buzz Alarm

ADC

Light Sensor

Zero corssing

GPIO ISR

