Лабораторный блок питания своими руками 0-30 В

Опубликовано: 30.08.2019




Многие уже успешно повторили и давно используют проект лабораторного БП от Electronics-lab. Повторил его и я сделав несколько изменений в схеме блока питания. Трансформатор представляет собой тороид 400 Вт 4×12 В, в котором 2 обмотки соединены для источника питания, а другая используется для питания измерительных приборов. Если говорить о них, тут использовались 2 цифровых мультиметра, потому что они стоят всего 300 рублей за пару, и их достаточно для показа А/V. Они питаются от источника питания, схема которого основана на базовом включении LM317.

Схема БП с регулировкой U / I

Схема принципиальная лабораторного БП от Electronics-lab

Блок питания этот собран по ставшей уже классической среди радиолюбителей схеме, повторённой без преувеличения сотни раз. Он имеет защиту от короткого замыкания / перегрузки. Всё было собрано из элементов, доступных в каждом магазине деталей.

Список элементов схемы

  • R1 = 2,2 кОм 1 Вт
  • R2 = 82 Ом 1/4 Вт
  • R3 = 220 Ом 1/4 Вт
  • R4 = 4,7 кОм 1/4 Вт
  • R5, R6, R13, R20, R21 = 10 кОм 1/4 Вт
  • R7 = 0,47 Ом 5W
  • R 8, R 11 = 27 кОм 1 / 4W
  • R9, R19 = 2,2 кОм 1 / 4W
  • R10 = 270 кОм 1 / 4W
  • R 12, R 18 = 56KOhm 1 / 4W
  • R14 = 1,5 кОм 1 / 4W
  • R15 , R16 = 1 кОм 1/4 Вт
  • R17 = 33 Ом 1/4 Вт
  • R22 = 3,9 кОм 1/4 Вт
  • RV1 = переменный 100 кОм
  • P1, P2 = 10 кОм линейные
  • C1 = 3300 мкФ / 50 В
  • C2, C3 = 47 мкФ / 50 В
  • C4 = 100 нФ
  • C5 = 200 нФ
  • C6 = керамика 100 пФ
  • C7 = 10 мкФ / 50 В
  • C8 = 330 пФ керамика
  • C9 = 100 пФ керамика
  • D1, D2, D3, D4 = 1N5402,3,4 диод 2 A — RAX GI837U
  • D5, D6 = 1N4148
  • D7, D8 = 5,6 В стабилитрон
  • D9, D10 = 1N4148
  • D11 = 1N4001 диод 1 A
  • Q1 = BC548 или BC547
  • Q2 = 2N2219
  • Q3 = BC557 или BC327
  • Q4 = 2N3055 силовой транзистор
  • U1, U2, U3 = TL081
  • D12 = светодиод

Методы измерения напряжения и тока выхода в таком источнике питания зависят от ваших возможностей и пожеланий. Когда дело доходит до напряжения, следует использовать любой вольтметр и подключать его к выходным клеммам устройства. Измерение тока в данном случае проводилось с помощью светодиодной линейки и микросхемы LM3915.

Чтобы иметь возможность измерять ток таким способом, напряжение возникающее на резисторе R7 должно быть первоначально усилено, поскольку LM3915 требует более высоких напряжений для измерения (на резисторе R7 при 3 A ток будет около 1,5 В). Усилить это напряжение надо с помощью операционного усилителя (по схеме неинвертирующего усилителя), и из-за того, что источник питания также имеет отрицательные напряжения, придется делать дополнительный канал питания.

Лучше питать дополнительный операционный усилитель так же, как U3. Усиливая напряжение с резистора R7, можно соблазниться регулируемым усилением (простая замена 2 или 3 резисторов с помощью переключателя), благодаря которому получим различные диапазоны измерения тока — полезные при низких токах. Также при настройке LM3915 может быть линейка или точка — по желанию.

Печатная плата для сборки

Печатная плата лабораторного БП от Electronics-lab

Плата разделена на 2 части, чтобы собрать всё как модуль на радиаторе. Использовались транзисторы BD249. Поскольку они хуже отводят тепло к радиатору, поставили 2 шт. Если ток блока питания будет увеличен до 5 А, стоит подумать о дальнейшем увеличении количества транзисторов, чтобы уменьшить мощность рассеиваемую на них.

Плата лабораторного БП — вид деталей

Что касается регулирования ограничения тока, для охвата диапазона до 5 А необходимо изменить значение резистора R18. Используя потенциометры со значениями, такими как перечисленные в списке компонентов, для 5 А резистор R18 должен быть заменен на значение около 33 кОм. На это может влиять разброс параметров стабилитрона который задает напряжение на выходе U1. Конечно следует использовать и более мощный трансформатор.

Печатные платы должны быть соединены с помощью двухрядных угловых штырьков. Большая плата имеет все элементы на исходной, кроме 4-х выпрямительных диодов (D1-D4). Тут использовался мостовой выпрямитель прикрученный к радиатору. На плате имеются только монтажные отверстия для соединения диодного моста с помощью проволочных секций.

Рисунок дорожек (сторона пайки) выполнен в черном цвете и может быть использован в качестве маски для повторения платы. Далее показано расположение элементов, а дорожки (вид через плату) изображены серым цветом. Элементы отмечены синим цветом и соответствующие описания находятся внутри или рядом с ними. Перемычки отмечены красным, а зеленые цифры рядом с контактными площадками соответствуют номерам на схеме и используются для подключения трансформатора, потенциометров, транзистора Q4 и выходных клемм источника питания. Меньшая плата предназначена для 2 транзисторов T1 и T2 BD249 (вместо оригинального транзистора Q4).

В описании этого источника питания трансформатор должен иметь напряжение 24 В, но есть некоторые сомнения по поводу этого напряжения. Схема также выдает -5 В для питания операционных усилителей. Выпрямленное напряжение от трансформатора даст нам около 36 В, а эти -5 В в сумме дадут более 40 В для операционных усилителей (U2 и U3). Параметры этих микросхем не предусматривают такое высокое напряжение, и даже если они сгорят — плохо когда радиоэлементы работают на пределе своих возможностей. Советуем использовать трансформатор с более низким напряжением — около 21 В, что означает максимальное выходное напряжение составит 28 В.

Также проведена замена моста выпрямителя и отказ от отдельных диодов, используемых в пользу 8A-200V KBU8D. Следующие изменения — это конденсатор C1 4400/100 В, резистор R1 на 5 Вт, дополнительные операционные усилители. Использовались LM318 и Q2 транзистор — KD503, для которого установлен охлаждающий вентилятор, что видно на фотографиях. Несмотря на использование пластикового корпуса, радиатор плюс вентилятор достаточны для хорошего отвода тепла. Если речь идет о вентиляторе, он включается в зависимости от температуры. Блок питания работает действительно отлично. Стоимость сборки не превышает 1000 рублей, из которых самый дорогой элемент — трансформатор.

Цифровые измерители DT-832 играют роль амперметра и вольтметра. Это кажется самым простым решением и, конечно же, дешевым (как вариант — купить LED модуль).

Естественно блок питания имеет защиту и ограничение по току. Можно увеличить выходной ток до 5 А, необходимо лишь заменить несколько элементов (увеличить их мощность), дополнительно улучшить охлаждение на транзисторе или параллельно подключить несколько так, чтобы регулирование стало возможным до 5 А.

Если не хотите ставить кулер — ставьте переключение обмоток для снижения мощности на силовом транзисторе. При 5 В и 3 А например слишком большая мощность высвобождается транзистором в воздух, поэтому переключение обмоток спасает от перегрева.

Схема подключения охлаждения

Схема принципиальная управления кулером БП

Вот схема контроллера вентилятора и реле. Датчик температуры в этой схеме — транзистор T8 — BD135.



Добавить комментарий